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Abstract

This paper is devoted to the delay-dependent stability analysis and
robust H, control for uncertain 7' — S fuzzy systems with time-delay.

New stability conditions are developed for the systems based on the
Lyapunov functional approach. Then a design method of the state

feedback H,, controller is proposed. All the researching results are

presented in terms of LMIs. Two numerical examples are given to

demonstrate the effectiveness of our proposed methods.
1. Introduction

Since time delays and perturbations are always the sources of
instability for a system, the stabilization problems and robust control of
nonlinear uncertain systems with time-delay have received considerable
attention for decades ([4, 5, 6, 7, 13, 14, 17, 19, 20]). These kind of systems
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can be found in many real life systems, such as electric power systems,
large electric networks, rolling mill systems, economic systems, aerospace
systems, different types of societal systems and ecological systems. In
practice, the inevitable uncertainties may enter a nonlinear system in a
much more complex way. The uncertainty may include modeling error,
parameter perturbations, fuzzy approximation errors, and external
disturbances. So we consider about the uncertain fuzzy systems with

time-delay in this paper.

Fuzzy system model and theory [10, 12] have attracted great deal of
interests for system analysis and synthesis. It is a useful method to
represent complex nonlinear systems by some fuzzy sets and reasoning.
When the nonlinear plant is represented by a so-called T — S type fuzzy
model, local dynamics in different state-space regions are represented by
linear model. The overall model of the system is achieved by fuzzy
“blending” of these fuzzy models. Therefore, it has a convenient dynamic
structure so that some well-established linear systems theory can be
easily applied for theoretical analysis and design of the overall closed-loop
controlled system. The control design is carried out based on the fuzzy
model via the so-called parallel distributed compensation (PDC) scheme
[11, 16].

Stabilization results for time-delay systems can be classified into two
types considering their dependence from time delay. Delay-independent
stability condition is independent of the size of the delay. It can be used to
study the systems without any information on the time-delays [14, 20].
On the other hand, the delay-dependent stabilization is concerned with
the size of the time delay and usually provides an upper bound of the
time delay such that the closed-loop system is stable for any time delay
less than the upper bound [4, 6, 8, 9]. It is well known that delay-
independent criteria often cause conservativeness because of ignoring the
information of the size of the delay, especially when the delay is
comparatively small. Therefore, in generally speaking, delay-dependent
results are less conservative than those for the delay-independent case as

the size of the delay is taken into account.

In this paper, we will study the stability and stabilization conditions

of uncertain 7' — S fuzzy systems with time delay. Then we will consider
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the robust H,, controller design method. The major contributions of our
paper are summarized as follows. First, it gives a delay-dependent
stability condition for uncertain 7' — S fuzzy systems with time delay by
Lyapunov functional approach. Second, based on this result, it proposes a

new design method of state feedback robust H. controller. Finally, its

results are presented in terms of LMIs.

The paper is organized as follows. In Section 2, the T — S fuzzy
model is presented to model an uncertain system with time-delay. In
Section 3, by using Lyapunov functional approach, a new delay-
dependent stability condition is given in terms of LMIs. In Section 4, the
existence condition of a delay-dependent robust H, controller via state
feedback is derived. In Section 5, two numerical examples are given to

show the effectiveness of our results. The conclusion is drawn in Section
6.

Notation. For a symmetric matrix X, the notation X > 0 means that
the matrix X is positive definite. I is an identity matrix of appropriate
dimension. X7 denotes the transpose of matrix X. For any nonsingular
matrix X, X ~1 denotes the inverse of matrix X. R" denotes the n-
dimensional Euclidean space. R"™" is the set of all m xn matrices.
Ly[0, ©) refers to the space of square summable infinite vector
sequences. |-[, stands for the usual Ly[0, ©) norm. * denotes the

transposed element in the symmetric position of a matrix.
2. System and Problem Description

Takagi and Sugeno proposed an effective way to represent a fuzzy
model of a nonlinear dynamical system. In this paper, we consider a
nonlinear time-delay system with parameter uncertainty, which could be
described by the following T — S fuzzy time-delay model with n plant

rules.
Plant Rule i.

If 21(t) is My, 29(t) is Mg, ..., 24(t) is Mg, then
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2(t) = (A + A4 (0))x(t) + (Ajg + Adyp(2))x(t - 1)
+(B; + AB;(t))u(t) + Byolt),

Z(t) = C;1x(t) + Ciox(t — 1) + D;u(t)

x(t) = ¢(t), t € [- 7, 0],

@)

where 2(t), ..., z4(t) are the premise variables and M;;(i =1, 2, ..., n, j

=1, 2, .., g) is the fuzzy set; x(t) € R? is the state vector; u(t) € R™ is
the input vector; w(z) is the disturbance which belongs to Ly[0, «); Z(¢)
€ RP is the controlled output; t >0 is a real positive constant
representing the time-delay of the fuzzy system; o¢(¢) is the initial
condition of system (1); A;;, A;9, B;, By, Ci1, Cig and D;(i =1, 2, ..., n)
are constant matrices of appropriate dimensions; AA;(¢), AA;5(t) and
AB;;(t)(i =1, 2, ..., n) are realvalued unknown matrices representing
time-varying parameter uncertainties of (1) and they satisfy the following
assumption.
Assumption 1.

[AA; (), Ao (2), AB;(t)] = U F;(t)[Ey, Eg, E;l, (2)

where E;, E;9, E; and U;(i =1, 2, ..., n) are known real constant
matrices of appropriate dimensions; F;(¢t)(i =1, 2, ..., n) are unknown

real time-varying matrices with Lebesgue measurable elements satisfying
FO'F@e) <1, i=12 .. n 3)

Let p;(z(¢)) be the normalized membership function of the inferred

fuzzy set p;(z(t)), i.e.,
wiw(0) = e

S el

where 2(t) = [21(t), 25(t), ..., 25(t)], pi(2(t)) = ﬁMij(Zj(t)), Mij(z;(@t)) is
-1

the grade of membership of z;(¢) in M;;. Then, it can be seen that
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n
Pi(z(t) 20, i=1,2.,n Y pat) >0, Vt=0.
=1

Therefor, for all ¢ > 0,

wEE) 20, =12 .0 ) ) = 1. ()
i=1

By using the center-average defuzzifier, product inference and
singleton fuzzifier, the T — S fuzzy model (1) can be expressed by the
following global model.

#(t) = Y (2 [Anx(t) + App(t - )+ Biu(t) + Byiolt)]
i=1
2(0) = D wile() [Cax() + Cigalt - 1) + Diu(t)], 5)

x(t) = ol0), £ < [, 0].

~

where Ail Ail + AAil(t), Zi2 2 i2 + AAiQ(t), Ei 2 Bi + ABi(t), i = 1,

By the parallel distributed compensation (PDC) technique, we
consider the following T — S fuzzy-model-based state feedback controller

for the fuzzy system (5). The ith controller rule is
If 21(t) is My, 29(t) is Mg, ..., 24(t) is Mg, then
ut) = K;x(t), (6)
where K;(i =1, 2, ..., n) is the controller gain of (6) to be determined.

Then, the overall fuzzy state feedback controller is given by
n
ult) = D wi(a0) Kix (o). )
1=1

By (5) and (7), we can obtain the following closed-loop fuzzy system
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n

) = DD O O Ay + BK))x(t) + Agx(t - 7) + Byiolt)],

i=1 j=1

20) = ) D wiEOw;EO)Cq + DiK;)x(t) + Cigx(t - 7], ()
i=1 j=1

x(t) = o(t), t € [-1, 0].

3. Delay-dependent Stability Analysis

In this section, we consider the problem of delay-dependent

stabilization of the following closed-loop fuzzy system. For simplicity, let

i = u(2(),
n
i(t) = Z win (A + BiK)x(t) + At - v)]. ©)
i-1 j=1
Using the Newton-Leibniz formula, we have

LO (t +0)do = x() — x(t - ).

Then, an equivalent form of fuzzy system (9) is that
~ 0
() = ZZW{ i+ A + BiK)x(t) - A | (e + e)de}. (10)
i=1 j= -t

It is easy to see that systems (9) and (10) have a common solution. Thus,
the stability problem of (9) can be transformed to the same problem of
(10).

Three important lemmas should be presented because they are the

key to prove the theorems.

Lemma 1 [15]. For any two matrices X and Y, we have
XTy + vTX < eXTX + YTy,

where X € R™",Y € R™", and ¢ is any positive constant.
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Lemma 2 [1]. For any two vectors x(t), y(t) € R", we have
2x” (1) y(t) < =T ()G 'x(0) + y" (1) Gy(0),

where G € R™" and G > 0.
Lemma 3 [18]. Given the matrices Y, U, and E of appropriate

dimensions where Y = YT, then for any matrix F satisfying FTF < 1,

Y +UFE + ETFTUT <o

holds if and only if there exists a constant € > 0 satisfying

Y +eUUT + ¢ 'ETE < 0.
Based on the Lyapunov functional approach, the delay-dependent

stabilization result of 7 — S fuzzy system (9) is summarized in the
following theorem.

Theorem 1. For t > 0, if there exist matrices X >0, M >0, N >0
and Y; satisfying the following LMIs:

&)ii * * * *
0 -M * * *
A X +BY, As,M -tvN * x | <0, (11)
NAL 0 0 —TIN s
X 0 0 0 -M|
2D+ ;) * * * x|
0 —4M * * *
(A, +Zj1)X+§in+]§jYi (Ao +;1j2)M —IN = * <0,(12)
N(Ajp+4;5)" 0 0 -tIN  x
i X 0 0 0 -0.25M

then the closed-loop fuzzy system (9) is asymptotically stable, where
i=12.,nin(1)and 1<i<j<nin(12), ®; = (A + A49)X + X

(A, + Ay )T + Ein + Y]-TEI-T. Moreover, the control gain K; is given by

K, =YXl i=12 .,n
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Proof. Let W, = Zil + fziz + Ein and R; = ANil + Ein. Choose

Lyapunov function as follows:
V(o) = <" O Px(0) + [ T () Qu(s)ds + jo [ "7 (5)Si(s)dsdo, (13)
t—t —-tJt+0

where P > 0,@ >0 and S > 0. Then, the derivative of (13) along the
trajectory of the closed-loop system (9) (or (10)) is given by

V(x(@) = 22T () Pit) + 7 (6)Qx(t) - xT (¢ — 1)Qux(t — 7) + wx” (£)Sx(t)
- J'_O 27 (¢ + 0)Sx(t + 0)do

- Z i i {sz (¢) PWjx(t) — 2x7 (t) PA;, j " %(t +0)de
j=1

i=1 j= ot
+x7 () Qux(t)
a7 (-0 Qx(t - 1)+ T (6)Si() - I t+9)Sx(t+9)d9} (14)

By (9), we have

TxT(t )Si(t) = Tznlzn:izn:uzujuk“l Rz]x(t)
J=

i=1 j=1k=11[=1

+ Ajg(t — O S[Ryyx(t) + Apox(t — )]

: Z Z bt [Ryjx(t) + Agpae(t — )] S[Ryx(t) + Asp(t - )]
i=1 j=
NN T () LT R} o )
_l IJZ;HLu][x (t) x (t—r)]{gé}(tS)[RU Al2]{x(t—r)}' (15)

By Lemma 2, we have
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n n - 0
-3y uiuj2xT(t)PAi2j #(t + 0)do
-7

im1 j-1

n

‘Z Z “i“jji 2xT () PA;%(t + 0)dO

n
=1 j=1

n

IN

n ~ ~ 0
e {rxT(t)PAiQS—lAiTZPx(t) + I 2Tt +0)Sk(t + e)de}. (16)
=1

i=1j -t

By substituting inequalities (15) and (16) into (14), we can obtain

x(t — 1)

Ve = 3wt o o ]
1=1

n-1 n
+0-5ZZHiuj[xT(t) xT(t—T)]f?ij[ =) },

i=1 j>1 x(t =)
where
o | PWi+ WIP+Q+tRLSR,; +tPA,,STTALP *
" tALSR;; ~Q+1ALSA, |
R Qijl *

= ’

i

~ ~ 7 ~ ~ T~ ~

WAjg + Ajo)” S(R;j + Rj;)  —4Q +t(Ajg + Ajg)” S(Aj + Ajg)

Aij T T

Qijl = 2P(VVL] + Wji)+ Z(VVL] + W]L) P+ 4Q + T(Rij + R]L) S(le + R]l)
+ ’EP(ALQ + A]‘Q)S_l(gﬂ + 212)TP

By using Schur complement, we can get the following conditions for
V(x(t)) < 0.

PW, +WEP o« x x .
0 — Q * * *
R; Ay —tlsT * x| <0, 17)
ALp 0 0 - 1718 *
i I 0 0 0 -Q|
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and
[2P(W; + W) + 2(W; + W) P . . . .
0 -Q * * *
Rij + Rji 552 + ij _¢1g7! * * < 0.
(Ajg + ;ljz)TP 0 0 - 7718 *
L I 0 0 0 -025Q7"

(18)

Define X = P71, M =Q ', N =S7! and ¥; = K;X. Then pre and post-
multiplying (17) and (18) by diag{X M I N I}, we can obtain
(11) and (12). This completes the proof.

Note that the matrices in (11) and (12) are monotonic increasing with
respect to t > 0. Therefore, we can get the following theorem.

Theorem 2. For a given scalar 1y such that t € [0, 1p7], if there
exist matrices X >0, M >0, N >0 and Y, satisfying the following
LMIs:

i &)ii * * * % 1
0 - M % * *
A X +BY, AyM -t N * x [ <0, (19)
NAL 0 0 —iyN =
X 0 0 0 - M|
2B+ ;;) x x * x|
0 -4M * * *
(An+Aj)X+BY;j+B)Y; (Ajp+Aj)M  —1ypN * x |<0,
N(Ajp+4A;)" 0 0 N *
i X 0 0 0 ~0.25M |

(20)

then the closed-loop fuzzy system (9) is asymptotically stable, where i =1,
2, .onin(19and 1<t < j<nin(20).
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Remark 1. If system (9) has no parameter uncertainties, i.e., AA;(t)
= AA;5(t) = AB;(t) = 0, then Theorem 2 is the delay-dependent stability

criterion of T — S fuzzy time-delay systems.
In the following, we will consider about the parameter uncertainties.

Theorem 8. For a given scalar 1y such that t € [0, 157], if there

exist matrices X >0, M >0, N >0,Y; and positive constants €;j

satisfying the following LMIs:

_®ii "

1 <o, 1)
|05, OY
O o+
6y, e, x |<o, (22)
04, 0 O

then the closed-loop fuzzy system (9) is asymptotically stable, where i =1,
2,..,nin(@l)and 1<i<j<nin(22),

i CDiL]_ * * * % |
0 -M * * *
O =|A,X + BY, A,M — 13N +e;UUT * x|,
NAL 0 0 —tyN s
X 0 0 0 - M)
®ii _EilX + EiZX + ELYL 0 0 EiQN 0
21 = )
E;X + E;Y, ExM 0 0 0
0 = ot )

0 — SijI ’
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A os -

(Di]1 * * * *
0 —4M * * *
QY = DY (Ajp+Ajo) M=ty N+eyUUL +e ;U UT x|
N(Ajp+Aj)" 0 0 N *
X 0 0 0 -0.25M

(:)ij EilX + EiZX + ElY] 0 0 O5E12N 0
21— EilX + ELY] EigM 0 0 ol

Ol = (A4 + Ai)X + X(Ay + Ap)' + BY; + YT BT + e u Ul
DY = 2(Ay + Ajg + A + Ajp) X + 2X(Ay + Ajg + Ajy + Aj)T
+2(BLY] + B]Yl) + 2(BLY] + B]YL )T + 28L]ULULT + 28]lU]U]T,

q)gl = (Ail + Ai1)+ BZY] + B]Yl

Moreover, the state feedback controller gain of (7) is given by K; =

X1 i=12 ..,n

Proof. Replacing A;;, Ajs and B; with A; +UF;(t)E;, Ajs +
U;F;(t)E;s and B; +U;F;(t)E; in (19) and (20), respectively, by

Assumption 1 and Lemma 3, using Schur complements, we can obtain
(21) and (22).

4. Design Method of State Feedback H, Controller

Now we consider the state feedback H_ controller design of system

(5). For H_, control, we always consider the following performance index
() £ [ ET0)(6) - vo" (0)o(o)]dd 23)
0

under zero initial condition, where y > 0 is a prescribed constant.
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Remark 2. The purpose to design a delay-dependent robust H,,
controller (7) for T — S fuzzy system (5) such that for all admissible

uncertainties satisfying (2), (3) and for a prescribed constant y > 0,

[a] The closed-loop fuzzy system (8) is asymptotically stable when
o(t) = 0;
[b] The closed-loop fuzzy system (8) satisfies | Z(t)|, < v| o(t)[,, i

J(®) < 0 for all nonzero w(t) € Ly[0, ©) under zero initial condition.

We consider the performance index (23) in the following theorem.

Theorem 4. For a prescribe constant y > 0 and a scalar tp >0
such that 1t €l0, tp], if there exist X >0, M >0, N >0 and Y,
satisfying the following LMIs:

qN)ii * * * * * *
0 -M * * * * *
B(fi 0 - sz * * * *
A X+BY, AoM B, -tuyN * * * <0,(29)
NAL 0 0 0 N = x
CilX + DiYi CigM 0 0 0 -1 *
X 0 0 0 0 0 -M)
2(&)1-1. +&)ﬁ) * * * * * * ]
0 —4AM * * * * *
2By + Byj)" 0 —4y?] * * x *
(Ail +511)X+ELYJ+§1Y; (Ai2+gj2)M B, +Bwj *‘EI&N * * * <0,
N(Ziz +Zj2)T 0 0 0 —r}vl[N * *
(Cil +C]1)X+DlY]+DJYL (CiZ +C]2)M 0 0 0 -1 *
L X 0 0 0 0 0 -0.25M |
(25)

then j(w) <0, where i =1,2, .., n in(24), 1 <i< j<n in(25),and ®;
is given in Theorem 1.

Proof. Under initial condition, we have
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J() = [ ETO)F(0) - 170 (0)0(0) + V(x(0)]d0 - V(x(x)

< [ BT ©)20) - 17" 0)ol6) + V(x(©)]d

n x(t)
2r..T T
=Y w0 21 o]« - )
=1 m(t)
x(t)
n-1n
+0.5 > il (@) " (t-2) o]l (- 0)),
i=1j>i
o(t)
where
Eii * *
hj=| tALSR; - Q+1ALSA;, + CLCy *
TBgiSRii + BgLP ’EBOT;L‘SALQ TBc{iSBwi - ’Y2I
Eijl * *
Gj =|2% B = |,
i & &
—31 =32 =33

g% = PW;; + Wl P+ Q + R}, SR;; + tPA;3S ™' A}, P
+(Cy + DiK;)" (Cy + DK;),
B = 2P(Wj; + Wy;)+ 2(W; + W;;)' P+ 4Q + «(R;; + R;;)" S(R;; + R;;)
+ PRy + App)ST (A + App)' P

T
+ (Cil + le + Din-i- D]Kl) (Cil + C]l + DLK] + D]Kl),

~ij ~ = T
2d) = A + Ajp)” S(R; + Ry;),

~ij ~ TR L q T

EYy = —4Q + (A + Ajg)” S(Ajg + Ajg) + (Cig + Cja)” (Cig + Cjo),

= T(B(oi + Bw] )T S(RL] + R]l) + Z(Bwi + Bm] )TP,

[1]>
o:
=

|
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. o~ o~
=4y = ©W(Byi + Byj) S(Ajz + Ajg),

[
w
L

|

Aij T
‘513]3 = T(Bo)i + Bo)j) S(Bmi + Bo)j) - 4Y2I-

By Theorem 2 and the proof of Theorem 1, we can obtain that when LMIs
(24) and (25) hold, J(w) < 0.

Remark 3. It is easy to see that (24) implies (19), and (25) implies
(20).

By Remark 2, Remark 3 and Theorem 4, considering about the
uncertainties, the design method of delay-dependent robust H,

controller is obtained in the following theorem.

Theorem 5. For a prescribed scalar y > 0 and a scalar ty; > 0 such
that © e [0, tpr], T - S fuzzy system (8) is stable and satisfies | Z(t) |, <
Y| o(t) |, for all nonzero w(t) € Lg[0, ] under zero initial condition if
there exist X >0,M >0, N >0,Y;(i=1,2,..,n) of appropriate
dimensions and positive constants € such that the following LMIs

simultaneously hold.

i )
1 <o, (26)

A% A

.

A oxox

Ajyy NGy x| <0, @27)
1) Ji

A2 0 Ay

where i =1,2,..,n in(26),1<i<j<nin@7),

Lplnl % * * * * *

0 -M * * # * *

B B;{l 0 _,YZ I * * % %

A{1=| Ay X+BY; AuM B, —tyN+e;UUL * x %

NAL 0 0 0 N+«

CyX+DY; CipM 0 0 0 -1 o«
X 0 0 0 0 0 -M
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Aii _ _EilXEiQ + X+Eiyvi 0 0 0 EiZN 0 0 AU _ @l]
21 E;X +E.Y; EoM 0 0 0 0 of 22 722
i li}lljl * * * * * * ]
0 AM * * * * *
2(Byi+Byj)" 0 4y’ o« o *
AY,= i (Ajg+Aj)M B,+B,; WY — x * * ,
N(Ajp+Ajy)" 0 0 0 —tyN = *
L2 (Cio+Cjo)M 0 0 0 -I =
i X 0 0 0 0 0 -0.25M|
Aij _ EilX + EigX + ELY] 0 0 0 05E12N 0 0
21 E; X + EY; EoxM 0 O 0 0 ol

Wi = (A + Ap)X + X(Ay + Ap)' X + BY; + V' Bl +e,U U],
o= 2(An + A + Aj + Ajg) X + 2X(A + Ajp + Ay

+Ajp)" +2BY; + B;Y;) + 2B;Y; + B;Y;)"

+ 26, UUL + 2¢,UUT

¥Y = (Ay + Aj)X + B)Y; + B}Y;,

i -1 T T
\P4J4 —’CMN + SijUiUi + SJLU]U] ,

\i]éjl (Cil + Cﬂ)X + DLY] + D]YL
Moreover, the state feedback controller gain of (7) is given by K; =

VX1 i=12 ..,n

Proof. Replacing A;j, A; and B; with A; + U;F,(t)E;, A
+U;F;(t)E;5 and B; +U;F;(t)E; in (24) and (25), respectively, by

Assumption 1 and Lemma 3, using Schur complements, we can obtain
(26) and (27). By Remark 3, we know that when (26) and (27) hold,
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system (8) with o(t) = 0 is asymptotically stable. By Remark 2, we can
complete the proof.

5. Numerical Examples

In this section, two examples are used to illustrate the proposed
methods.

Example 1. Consider an uncertain T — S fuzzy system with time-

delay as follows:

Rule 1. If x4(¢) is small, then
%) = (A1 + AAqq)x(t) + Ajox(t — t) + Byul?).
Rule 2. If x4(¢) is big, then
2(t) = (Agy + AAgy )x(t) + Aggx(t — 1) + Baul?). (28)

The model parameters are given as follows:

0  -09 0 0.01 1
Ay = , Ay = , B =| |,
1 {— 03 - 1.5} 12 L 0.018 0.2} 1 M
0 -08 0 0.01 1
A = Py A = ’ B = ’
21 [— 04 - 1.7} 22 {— 0.012 0.19} 1 M

U, - [gﬂ E,=[02 03], F()=sin(),

U, = [_0011} Ey; =[-02 0.2], Fy(t) = —sin(t),

where AA;; = U;F;(t)E;; (i =1, 2).

The membership function for x5 are as follows:

1, x9 € (-0, 1],
small(xg) = 10.5(1 —x), x9 €[-1,1],
0, xg9 € [1, ),

and
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0, x9 € (-, —1],
big(xg) =40.51+x), x9 €[-1,1],
1’ X9 € [1’ OO)

The system (28) with u(t) = 0, T = 0.5 has unstable response as shown in
Figure 1 for the initial condition x(0) = [2 - 5]

unforced state response

10

state

e —
- . " e,

time(sec)

Figurel. The response of the system (28) with u(t) = 0 and initial

condition x(0) = [2 - 5], and © = 0.5.

Hereby, if we give the state feedback controller as (7), the closed-loop
fuzzy system can be obtain. Then solving the LMIs (21) and (22) by
MATLAB LMI Toolbox, the state feedback gain K;(i = 1, 2) can be obtain

as follows:
K; =[-1.2665 0.6977] Ko = [-1.2445 0.7281].



DELAY-DEPENDENT STABILITY ANALYSIS AND ROBUST ... 149

The simulation result with initial condition x(0) = [2, — 5]T is shown in

Fig. 2.

Closed-loop state responsa

timeisec)

Figure 2. State response under initial condition x(0) = [2, - 5]7 and
Tt = 0.5.

Example 2. Consider an uncertain nonlinear system with time-delay
as follows:

%1 (t) = —(3+cos? xg (t))xy (£) + x5 (£)— 0.1sin? x5 () 21 (- 7)
—(5-2sin? x(t)) 29 (¢ — 1)+ ()29 (¢)sin? xo (¢)+ c(t) x1 (t)cos? x5 (£)
+(1+sin? x5 (2)) 0(t), (29)
%9 (t)=—(0.4—0.5c08% x9(t))x (£)— x5 (t)+(0.1-0.2cos? x4(t))x1 (£ — 7)
—0.1x9 (¢t —1)+u(?),

where c(¢) is an uncertain parameter satisfying c(¢) € [- 0.2, 0.2]. If we

select the membership function as M (x5 (¢)) = sin?(x5(¢)) and My(xo(t))
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= cosz(xg(t)), then the nonlinear time-delay system (29) can be

represented by the following uncertain time-delay 7' — S model

Plant Rule 1:
If x9(¢) is M;, then

x(t) = (A1q + AAp1(2))x(t) + Ajgx(t — 1) + Byult) + By olt),
Z(t) = Cyyx(t) + Cyox(t — 1) + Dyult),
Plant Rule 2:
If x5(t) is Mg, then

{x(t) = (Agq + Ay (2))x(t) + Aggx(t — 1) + Bou(t) + Bygolt),
E(t) = C21X(t) + C223C(t — ‘C) + D2u(t),

where

3 1 01 -3 0 2
Ay = , Ay = , By =| |, By =|_|
= L 04 - 1} 12 { 01 - 0.1} 1 m ol M

41 0 5 0 1
Agq = , Agy = , By=| |, Byo=|_|,
21 {0.1 - J 22 L 0.1 - 0.1} 2 M o2 [0}

0.1 0 0 0 1
0112021:{0 01}’ C12=sz=[ } D1=D2=[}

1 0 0 02 02 0
U12U2={0 0}’ E“:{o 0}’ Em:[o 0}'

Choose the H, performance level y =1, given the state feedback
controller as (7). Then for t = 0.8, according to Theorem 5, by solving
LMIs (26) and (27) , we have

[11.6923 0.0146  [52.0023  -0.0397
0.0146  0.4336] - ’

-0.0397 1.3720

79.1302  -2.5054
~92.5054 1.5081 |

and
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Y; =[1.2904 -0.2493], Y, =[0.1588 -0.2271].

Finally, the responding control gains are given by:

K, =[0.1111 -0.5788], K, =[0.0142 -0.5243],

and the maximal delay is t5; = 1.16.
6. Conclusion

In this paper, a class of uncertain 7" — S fuzzy-model-based systems
with time-delay are considered. Based on Lyapunov functional approach,
some new delay-dependent criteria are derived for stabilization and

robust H, control of this kind of systems. All the results are given in

terms of LMIs. Numerical examples are presented to demonstrate the
effectiveness of our methods.
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